
Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič
Dr. Hans-Joachim Böckenhauer

https://courses.ite.inf.ethz.ch/theo_inf_21

Exemplary Solutions – Sheet 5

Zürich, October 29, 2021

Solution to Exercise 13

(a) Let L1 = {u#v#w | u, v, w ∈ {0, 1}+ and Number(u) · Number(v) = Number(w)}.
We prove that L1 is not regular using Lemma 3.12 as well as the pumping lemma.
Because L1 is defined over an alphabet of size 3, the Kolmogorov complexity argument
is not directly applicable.

Proof using Lemma 3.12. Suppose that L1 is regular. Then there exists an automa-
ton A1 = (Q, {0, 1,#}, δ, q0, F) with L(A1) = L1. Let m = |Q|. We consider
the words

1#1#, 12#1#, 13#1#, . . . , 1m+1#1# .

Since these are m+ 1 words, i.e., more words than the number of A1’s states,
there exist i, j ∈ {1, . . . ,m+ 1} with i < j such that

δ̂(q0, 1i#1#) = δ̂(q0, 1j#1#).

By Lemma 3.12, for all z ∈ {0, 1,#}∗, we have

1i#1#z ∈ L1 ⇐⇒ 1j#1#z ∈ L1.

However, choosing z = 1i leads to a contradiction because 1i#1#z = 1i#1#1i ∈
L1 and 1j#1#z = 1j#1#1i /∈ L1. Hence, the assumption is wrong and the
language L1 is not regular.

Proof using the pumping lemma. Suppose that L1 is regular. Then the pumping
lemma (Lemma 3.14) yields a constant n0 ∈ N such that every word w ∈
{0, 1,#}∗ with |w| ≥ n0 can be split into three parts y, x, and z so that

(i) |yx| ≤ n0,

(ii) |x| ≥ 1, and

(iii) either {yxkz | k ∈ N} ⊆ L1 or {yxkz | k ∈ N} ∩ L1 = ∅.
We choose the word w = 1n0#1#1n0 . It clearly holds that |w| ≥ n0. Hence,
there exists a decomposition w = yxz of w satisfying the conditions (i), (ii),

https://courses.ite.inf.ethz.ch/theo_inf_21

and (iii). Because of (i), |yx| ≤ n0 holds, thus y = 1l and x = 1m for l,m ∈ N
with m ≤ n0. Because of (ii), m > 0 holds. Because w ∈ L1, (iii) implies that

{yxkz | k ∈ N} = {1n0+(k−1)·m#1#1n0 | k ∈ N} ⊆ L1 .

However, this is a contradiction because yx2z = 1n0+m#1#1n0 /∈ L1. Hence,
the assumption is wrong and the language L1 is not regular.

(b) Let L2 = {0p | p ∈ N is a prime number}. We first show that L2 is not regular using
the pumping lemma.

Proof using the pumping lemma. Suppose that L2 is regular. Then the pumping
lemma (Lemma 3.14) yields a constant n0 ∈ N such that every word w ∈ {0}∗
with |w| ≥ n0 can be split into three parts y, x, and z so that

(i) |yx| ≤ n0,

(ii) |x| ≥ 1, and

(iii) either {yxkz | k ∈ N} ⊆ L2 or {yxkz | k ∈ N} ∩ L2 = ∅.
We choose the word w = 0p for a prime number p ≥ n0. It clearly holds that
|w| ≥ n0. Hence, there exists a decomposition w = yxz of w satisfying the
conditions (i), (ii), and (iii). Because of (ii), m > 0 holds. Because w ∈ L2, (iii)
implies that

{yxkz | k ∈ N} = {0p+(k−1)·m | k ∈ N} ⊆ L2 .

Now we choose k = p + 1. Then yxkz = 0p+(k−1)m = 0p+pm = 0p·(m+1). Hence,
we derive a contradiction because p · (m+ 1) is no prime number (recall that
m > 0). Hence, the assumption is wrong and the language L2 is not regular.

A consequence of the prime number theorem. We can also show that L2 is not
regular using the Kolmogorov complexity argument or Lemma 3.12. To this
end, we need the prime number theorem (Theorem 2.67 in the textbook) that
we have not proved in the lecture. The prime number theorem implies that the
difference between two consecutive prime numbers can be arbitrarily large: if
the difference was upper bounded by some k ∈ N, then there were at least n/k
prime numbers among the first n natural numbers. This would contradict the
prime number theorem saying that there are approximately n/ lnn such prime
numbers.

Now we use this observation in the Kolmogorov complexity argument showing
that L2 is not regular.

Proof using the Kolmogorov complexity argument. Suppose that L = L2 is regu-
lar. Let pm be the m-th prime number. Then 0pm+1−pm−1 is the first word in the
language

L0(pm)+1 = {y | 0(pm)+1y ∈ L}.

Theorem 3.19 yields a constant c, independent of m, so that

K(0pm+1−pm−1) ≤ dlog2(1 + 1)e+ c = 1 + c.

Since there are only finitely many programs of constant length at most 1 + c,
but the above consequence of the prime number theorems implies that there are

2

infinitely many words of the form 0pm+1−pm−1, we derive a contradiction. Hence,
the assumption is wrong and the language L2 is not regular.

We can also use the above consequence of the prime number theorem to show
that L2 is not regular, using Lemma 3.12.

Proof using Lemma 3.12. Suppose that L2 is regular. Then there exists an automa-
ton A2 = (Q, {0}, δ, q0, F) with L(A2) = L2. Let m = |Q|. We choose m + 1
distinct prime numbers pl0 , . . . , plm such that the differences plj+1− plj between
consecutive prime numbers are pairwise distinct and – without loss of genera-
lity – monotonically increasing. Such prime numbers exist due to the above
consequence of the prime number theorem. Then we consider the words

0pl0 , 0pl1 , . . . , 0plm .

Since these are m+ 1 words, i.e., more words than the number of A2’s states,
there exist i, j ∈ {0, . . . ,m} with i < j such that

δ̂A2(q0, 0pli) = δ̂A2(q0, 0plj).

By Lemma 3.12, for all z ∈ {0}∗, we have

0pliz ∈ L2 ⇐⇒ 0plj z ∈ L2.

However, choosing z = 0pli+1−pli leads to a contradiction because

0pliz = 0pli+1 ∈ L2

and 0plj z = 0plj
+(pli+1−pli

) /∈ L2 by the assumption on the chosen prime numbers.
Hence, the assumption is wrong and the language L2 is not regular.

Solution to Exercise 14

(a) The following nondeterministic finite automaton M accepts the language

L = {x ∈ {0, 1}∗ | |x|0 mod 3 = 0 or x = 1y01 for y ∈ {0, 1}+} .

q0 q1 q2 q3 q4

p1 p2 p0

0 1

1

1

0 0

1 1

0

0, 1

0, 1

0 1

3

This automaton consists of two subautomata for the two languages

L1 = {x ∈ {0, 1}∗ | |x|0 mod 3 = 0}

and

L2 = {x ∈ {0, 1}∗ | x = 1y01 for y ∈ {0, 1}+}

with L1 ∪ L2 = L. The automaton M branches from the initial state q0 nondetermi-
nistically into one of the two subautomata. In the states p0, p1, and p2, M counts
the number of zeros in the input modulo three. If the count is 0, the first of two
conditions of L is satisfied and M accepts the input in the state p0. In the states
q1 through q4, M looks for the pattern y01 from the second condition of L. The
automaton M decides nondeterministically in the state q2 when the suffix 01 starts.
The prefix 1 of the overall pattern 1y01 is read upon the transition from q0 to q1.
The state q0 must be accepting because the empty word λ is contained in L1 ⊆ L.

(b) Applying the power set construction to the provided nondeterministic finite automa-
ton yields the following deterministic finite automaton A. All nonreachable states
have been left out from A. For the sake of the diagram’s simplicity, the labels of the
states have been shortened, e.g., pqr stands for 〈{p, q, r}〉.

p pq

pr

pqr

ps

prsa

b

a

b

a

b

a

b

a

ba

b

Solution to Exercise 15

(a) Because L1 and L2 are regular languages, there exist finite automata

A1 = (Q1, {a, b}, δ1, q0,1, F1) and A2 = (Q2, {a, b}, δ2, q0,2, F2)

with L(A1) = L1 and L(A2) = L2. We provide a finite automaton A with L(A) = L
that implies the regularity of L = L1{c}L2. Without loss of generality, we assume
that the sets Q1, Q2, and {qs} are pairwise disjoint, where qs is an additional state.
Let A = (Q1 ∪Q2 ∪ {qs}, {a, b, c}, δ, q0,1, F2) be the automaton with the transition
function δ defined as follows:

δ(q, s) = q′ for all s ∈ {a, b} and q ∈ Q1 with δ1(q, s) = q′,

δ(q, s) = q′ for all s ∈ {a, b} and q ∈ Q2 with δ2(q, s) = q′,

δ(q, c) = q0,2 for all q ∈ F1,

δ(q, c) = qs for all q ∈ (Q1 − F1) ∪Q2, and

δ(qs, s) = qs for all s ∈ {a, b, c}.

4

The automaton A first proceeds exactly like the automaton A1, as long as symbols
from {a, b} are read, except that the states F1 ⊆ Q1 are not accepting in A. If
c is read in one of the states from F1, the automaton A makes a transition to
the initial state q0,2 of the automaton A2 and then proceeds exactly like A2, as
long as symbols from {a, b} are read. If c is read in some state outside F1, the
automaton A makes a transition to the sink state qs that is not accepting and
stays there independently of the remaining input. Hence, exactly the words from
L1{c}L2 = {w1cw2 | w1 ∈ L1, w2 ∈ L2} are accepted.

(b) Since L is regular, there exists a finite automaton A = (Q,Σ, δ, q0, F) with L(A) = L.
We describe a finite automaton AR with L(AR) = LR, which proves the claim.

We first assume that A has exactly one accepting state, i.e., F = {f} for some f ∈ Q.
In this case, it is sufficient to reverse all transitions. Formally, this yields in general
a nondeterministic finite automaton AR = (Q,Σ, δR, f, {q0}) with

δR(q, s) = {q′ ∈ Q | δ(q′, s) = q} for all s ∈ Σ and q ∈ Q.

This automaton obviously accepts LR and, using the powerset construction from
Theorem 3.26 in the textbook, we can transform it into an equivalent deterministic
finite automaton.

If the automaton A does not have exactly one accepting state, we define Af =
(Σ, Q, δ, q0, {f}), for each state f ∈ F , and observe that L(A) = ⋃

f∈F L(Af). Hence,
we can apply the above construction |F | times to construct, for each f ∈ F , a
deterministic finite automaton AR

f with L(AR
f) = L(Af)R, and combine the resulting

automata into a large product automaton AR accepting the language L(AR) =⋃
f∈F L(AR

f) =
(⋃

f∈F L(Af)
)R

.

5

