
Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič
Dr. Hans-Joachim Böckenhauer

https://courses.ite.inf.ethz.ch/theo_inf_21

Exemplary Solutions – Sheet 8

Zürich, November 26, 2021

Solution to Exercise 22

(a) To prove L{
H ≤EE Lall, we describe an algorithm F that transforms an input x

for L{
H into an input f(x) for Lall. The algorithm F first checks if x has the form

Kod(M)#w, for a Turing machine M and a word w ∈ {0, 1}∗. If this is not the case,
then F outputs the code of a Turing machine Mall that accepts every input, i.e.,
f(x) = Kod(Mall). Otherwise, F computes the code of a Turing machine M ′ that
works as follows. On an input y, M ′ simulates |y| steps of the machine M on w. (If
M halts in less steps during the simulation, then M ′ simulates less than |y| steps.) If
M halts on w during the simulation of at most |y| steps, then M ′ rejects the input y.
Otherwise, M ′ accepts the input y.

The output of F is f(x) = Kod(M ′).
Now we prove the correctness of the reduction, i.e., x ∈ L{

H ⇐⇒ f(x) ∈ Lall, for all
x ∈ {0, 1,#}∗.
Let us first suppose that x ∈ L{

H and distinguish the following two cases. If x does
not have the form Kod(M)#w, for any Turing machine M and any word w ∈ {0, 1}∗,
then f(x) = Kod(Mall) and thus f(x) ∈ Lall. Otherwise, if x = Kod(M)#w, for a
Turing machine M and a word w ∈ {0, 1}∗, then M does not halt on w because
x ∈ L{

H. This further implies that M ′ accepts every input y ∈ Σ∗ because M never
halts on w during the simulation, in particular not within |y| steps. Hence, f(x) ∈ Lall

holds.

Let us suppose that x /∈ L{
H, i.e., x ∈ LH. Then x has the form Kod(M)#w, for a

Turing machine M and a word w ∈ {0, 1}∗, and M halts on w after a certain number
of steps k. Let y be an arbitrary word in Σk. On the input y, M ′ simulates |y| = k
steps of M on w. Because M halts on w during |y| = k steps, M ′ rejects the input y,
i.e., y /∈ L(M ′). Hence, f(x) = Kod(M ′) /∈ Lall.

https://courses.ite.inf.ethz.ch/theo_inf_21

(b) We have

(Linfinite){ = {w ∈ {0, 1}∗ | w 6= Kod(M ′) for all TM M ′}
∪ {Kod(M) | there exists some input x on which M halts} .

In the following, we describe a nondeterministic Turing machine N with L(N) =
(Linfinite){. Hence, for every word w ∈ (Linfinite){, there exists a finite accepting
computation of N on w. The NTM N first checks if the input w has the form
w = Kod(M), for some TM M . If this is not the case, then N accepts the input w. If
w = Kod(M) holds for some TM M , then N nondeterministically chooses a word x
over the input alphabet of M and simulates M on x deterministically.

If M halts on x, then N accepts its input w. If M does not halt on x, then N does
not halt on w either.

The machine N clearly accepts all words that are not codes of a Turing machine. If
the input w is the code of a TM M , then w ∈ (Linfinite){ holds if and only if there
exists a word x such that M halts on x. Hence, if w ∈ (Linfinite){, then there exists an
accepting computation of N on w in which N nondeterministically chooses exactly
this word x. If w ∈ Linfinite, then no such accepting computation of N on w exists.
Hence, N is a NTM that accepts (Linfinite){ and thus (Linfinite){ ∈ LRE.

Solution to Exercise 23
The idea behind the construction of A is to simulate 12 steps of M in 6 steps of A. To this
end, every 12 cells of the working tape of M are combined into one cell of A. The same
compression is applied to the input as well, A uses its second working tape for that. We
note that A can simulate a constant number of M ’s computation steps in a single step if
A has saved the symbols read by M in those steps in its state in advance. We thus pay for
optimizing the running time by a significant blow-up of the working alphabet and the set
of states.

The MTM A has the same input on its input tape as M . To shorten the computation, A
first compresses this input to the second working tape. To this end, it always reads 12
cells of the input tape and writes the 12-tuple of input symbols in one cell of the second
working tape. This clearly requires n + 1 steps on an input of length n since the head
on the input tape reaches the right endmarker $ at the (n + 1)-th step. Afterwards, A
moves the head on the second working tape back to the start. Because dn/12e cells are
used on that tape, this requires dn/12e steps. Hence, A needs 13n

12 + c1 steps in total for
the preprocessing, for a small constant c1, e.g., c1 = 2.

The actual simulation of M by A proceeds in rounds of up to 6 computation steps. In
every round, A simulates 12 computation steps of M . This yields a running time of the
simulation at most⌈

TimeM(n)
12

⌉
· 6 ≤ TimeM(n)

2 + c2 ,

for some small constant c2, e.g., c2 = 6.

At the beginning of every round, A reads the contents of its two working tapes at the
current cell and the two neighbouring cells at the left and right and saves these 3 · 12 = 36
cells of the input and working tape of M in its states. This requires 4 steps: one step to
the left, two steps to the right, and one step back to the original position. Hence, A now

2

has enough information to simulate 12 steps of M in its states since M can move by at
most 12 positions in 12 steps and A knows at least 12 cells to the left and right of the
current position of M . In the 12 simulated steps, M can only change the contents of two
of the three blocks of 12 cells. These changes can be performed by A in at most 2 steps on
its tapes as follows: We only describe the modification of the first working tape, changing
the head position on the simulated input tape can be performed analogously.

In the fifth step of the round, A changes the content of the current cell of the working
tape according to the 12 computation steps of M and moves the head to the left or right
if changes are required in the corresponding part of M ’s tape simulated there. In the sixth
step, A performs modifications on the neighbouring cell and potentially returns back. If
changes are only necessary on the current position of both working tapes of A, then the
sixth step is not needed.

Overall, this yields the claimed upper bound on the total running time of A.

Solution to Exercise 24
The grammar G = ({S,A,X}, {0, 1, 2}, P, S) with

P = {S → AS2, S → X,AX → 0X1, A0→ 0A,X → λ}

generates the language L. It is based on the following idea: Using the rule S → AS2, an
equal number of A’s and 2’s is generated. The A’s serve as placeholders for 0’s and 1’s
here. Using the rule AX → 0X1, a symbol A is transformed into a 0 and 1. The rule
A0→ 0A moves the produced 0 across all A’s to the left. Once the produced 0 has been
moved left at least once, the rule AX → 0X1 can be applied again. If the rule X → λ
is applied although A’s are still present, then no terminal word can be produced, which
means that we do not get a valid derivation. The empty word can also be derived using
S ⇒ X ⇒ λ. A derivation of the word 000111222 can be as follows:

S ⇒ AS2⇒ AAS22⇒ AAAS222⇒ AAAX222
⇒ AA0X1222⇒ A0AX1222⇒ 0AAX1222⇒ 0A0X11222
⇒ 00AX11222⇒ 000X111222⇒ 000111222 .

3

